

Unit - V Wireless Network Technologies

Types of Wireless Networks:

1. Wireless LAN (WLAN)

Range: Covers a small area like a home, office, or school.

Technology: Typically uses Wi-Fi (IEEE 802.11 standards).

Purpose: Connects devices like laptops, smartphones, and printers within a limited space.

Example: Your home Wi-Fi network.

2. Wireless Metropolitan Area Network (WMAN)

Range: Spans across a city or metropolitan area.

Technology: Often uses WiMAX (Worldwide Interoperability for Microwave Access).

Purpose: Provides broadband wireless access to large urban areas.

Example: City-wide public Wi-Fi or municipal wireless networks.

3. Wireless Personal Area Network (WPAN)

Range: Very short—typically within 10 meters.

Technology: Bluetooth, Zigbee, Infrared.

Purpose: Connects personal devices like smartphones, smartwatches, and wireless headphones.

Example: Bluetooth connection between your phone and earbuds.

4. Wireless Wide Area Network (WWAN)

Range: Covers large geographical areas, even nationwide or global.

Technology: Cellular networks (3G, 4G, 5G), satellite communication.

Purpose: Enables mobile connectivity over long distances.

Example: Mobile data on your phone or satellite internet in remote areas.

Working of Wireless Networks:

- Wireless technologies like Wi-Fi, Bluetooth, and cellular networks allow devices to connect without physical cables.
- The term "wireless network" refers to setups where communication happens through radio waves or infrared signals.

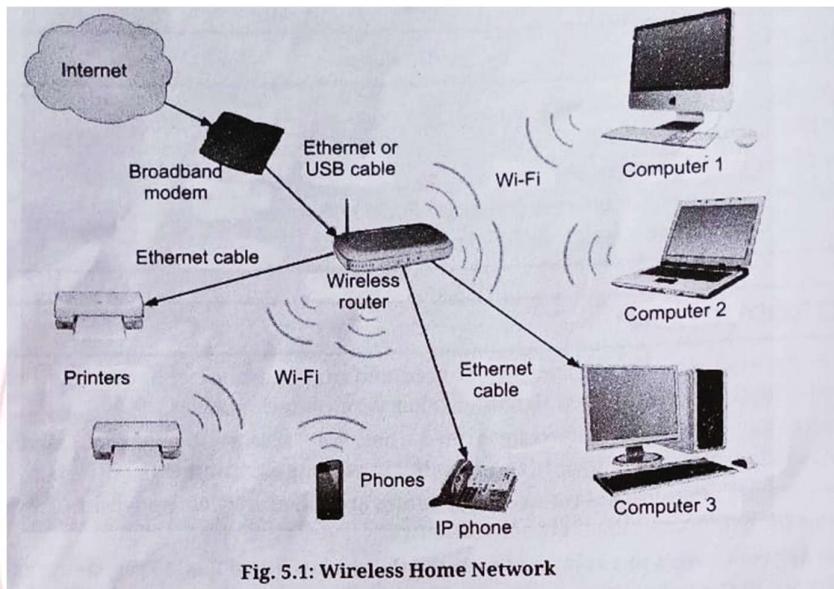


Fig. 5.1: Wireless Home Network

Benefits of Wireless Networks:

1. **Mobility:** Users can move freely within the coverage area.
2. **Flexibility:** No need for fixed wiring—easy to connect devices.
3. **Cost-Effectiveness:** Reduces installation and maintenance costs.
4. **Scalability:** Easy to expand by adding more devices.
5. **Convenience:** Simplifies setup and daily use.

Challenges of Wireless Networks:

1. **Security Risks:** More vulnerable to unauthorized access.
2. **Reliability & Speed:** Can be affected by interference or distance.
3. **Signal Strength:** Obstacles like walls or other devices may weaken signals.

Components of Wireless Networks:

Sr. No.	Components	Description
1.	Access Point (AP)	A network device that allows wireless devices to connect to and communicate with wired networks.
2.	Router	A device that connects two or more packet-switched networks or subnetworks, manages traffic between the networks, receives and sends data on computer networks and allows multiple devices to use the same wireless Internet connection.
3.	Wireless Devices	Electronic devices such as smartphones, tablets, laptops, game consoles and other gadgets equipped with wireless adapters that allow them to connect to the network without wires.
4.	Modem	A device that connects the network to the Internet Service Provider (ISP) and converts digital signals for transmission.
5.	Antennas	Devices that enhance signal strength and coverage, either built into electronic devices or attached externally.
6.	Switch	An electrical component used to control multiple devices remotely without physical wiring.
7.	Repeater	An electronic device that receives a wireless signal and amplifies it, extending the network's coverage area.
8.	Extender	A device that boosts the wireless signal range and retransmits it to farther distances, helping to bridge gaps in coverage.
9.	Bridge	A device used to improve and extend Wi-Fi network coverage, connecting the segments of the same network.
10.	Firewall	A network security device that monitors incoming and outgoing traffic and blocks unauthorized access.
11.	Gateway	A device that connects different networks, allowing communication between different protocols, or wired and wireless networks.

5.1 Wireless Network Communication-

3G

Features Include:

1. Data speed up to 2 Mbps
2. Mobile Internet browsing
3. Advance security features for mobile devices
4. Support for video calls and mobile TV
5. 3G network operate on frequencies between 850 MHz and 2100 MHz
6. They use technology like WCDMA(UMTS) and CDMA 2000

4G (Mobile Broadband),

- Launched around 2010.
- Enabled high-speed mobile internet and broader adoption of mobile broadband.
- Supported services like video conferencing, HD mobile TV, cloud computing, and gaming.

Advantages of 4G:

- Speeds up to 100 Mbps.
- Efficient, secure, and low latency.
- High capacity and cost-effective.
- Fewer dropped calls and dead zones.

Key Features:

- Mobile broadband access for smartphones and tablets.
- IP telephony (internet-based voice calls).
- Gaming services with high-speed connectivity.
- HD mobile TV and video conferencing.
- Cloud computing via LTE networks.

4G+ (LTE-Advanced)

- Enhanced version of 4G.

Offers:

- Faster downloads
- Better streaming
- Improved connectivity
- Superior user experience

5G (Next Frontier)

- Fifth-generation mobile network.
- Uses technologies like MIMO and beamforming.
- Designed to connect everything—people, machines, devices.

Advantages of 5G:

- Ultra-fast data speeds
- Very low latency
- Massive connectivity (up to 1 million devices per sq. km)
- Reliable, high-capacity, and uniform performance

Q: Differentiate between 1G, 2G, 3G, 4G, 5G

Table 5.1.6 : Comparison of various mobile system generations

Sr. No.	Feature	Generation				
		1G	2G	3G	4G	5G
1.	Generation	First	Second	Third	Fourth	Fifth
2.	Year of introduction	1970	1990	2001	2010	2020
3.	Technology	Analog cellular	Digital cellular	Broadband, IP, FDD, TDD	IP-broadband Wi-Fi, MIMO	IPv6
4.	Standard	AMPS	CDMA, TDMA, GSM	CDMA, UMTS, W-CDMA	Wi-Max and LTE	Yet to be finalized

TechKnowledge
BY V2V EDUCATION

5.	Switching	Circuit	Circuit / Packet	Circuit/Packet	Packet	packet
6.	Frequency band	824-894 MHz	850-1900 MHz	1.6-2.5 GHz	2-8 GHz	15 GHz
7.	Data speed	2.4 kbps	9.6 kbps	2 Mbps	50 Mbps	Higher than 1 Gbps
8.	Multiplexing	FDMA	CDMA, TDMA	CDMA	MC-CDMA OFDM	MC-CDMA, LAS-CDMA, OFDM
9.	Core network	PSTN	PSTN	Packet Network	Internet	Internet
10.	Services	Only voice or only message	Digital voice, Data, SMS	High speed data, Voice, Video	Dynamic Information Access	Interactive multimedia, Voice over IP

Comparison of 3G vs 4G vs 5G:

Feature	3G	4G	4G+ (LTE Advanced)	5G
Peak Data Rate	Up to 42 Mbps	Up to 1 Gbps	Up to 3 Gbps	Up to 20 Gbps
Latency	100-500 ms	20-30 ms	10-20 ms	1-4 ms
Frequency Bands	850 MHz - 2.1 GHz	600 MHz - 2.5 GHz	600 MHz - 6 GHz	600 MHz - 100 GHz
Network Architecture	Circuit-Switched	Packet-Switched	Packet-Switched	Packet-Switched, Virtualized
Download/Upload Speed	3-7 Mbps / 1 Mbps	10-50 Mbps / 10 Mbps	100-150 Mbps / 50 Mbps	100 Mbps-10 Gbps / Up to 10 Gbps
Use Cases	Voice, SMS, MMS	Streaming, VoIP, Web	HD Streaming, IoT	IoT, VR/AR, Autonomous Vehicles
Backwards Compatibility	2G	3G, some 2G	4G, 3G	4G, 3G, 2G

5.2 SDN (Software Defined Network)

What is SDN? Definitions of SDN (Software Defined Network)

- SDN (Software Defined Network) is an approach to the networking in which control is decoupled from hardware and given to a software application called controller.

OR

Mob No : [9326050669](tel:9326050669) / [9372072139](tel:9372072139) | YouTube : [@v2vedtechllp](https://www.youtube.com/@v2vedtechllp)

Insta : [v2vedtech](https://www.instagram.com/v2vedtech/) | App Link | [v2vedtech.com](https://www.v2vedtech.com)

- SDN (Software Defined Network) is a technology to networking that allows centralised, programmable control planes so that network operators can control, and manage directly their own virtualized networks.
- Software Defined Networking (SDN) is a modern networking approach that separates the control plane from the data plane.
- This separation allows for centralized control and programmable network behavior.

Traditional Networking vs SDN

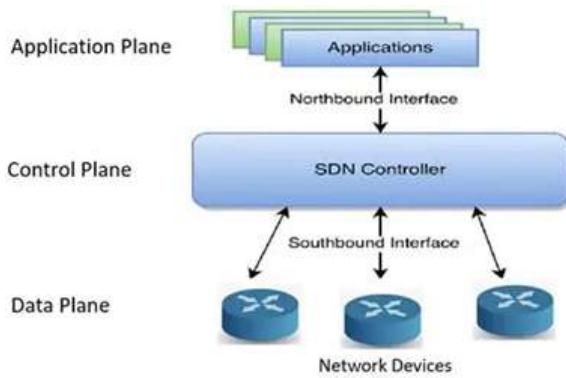
- In traditional networks, routers and switches handle both:
 - Control Plane: Decides how traffic should flow.
 - Data Plane: Forwards the actual packets.
- In SDN, these roles are decoupled:
 - The control plane is implemented in software (central controller).
 - The data plane remains in hardware (switches).

Data Plane (it's called The Muscle of the Network)

- **Function:** Forwards data packets based on rules set by the control plane.
- **Role:** Executes instructions—transmits, receives, and processes data.
- **Tasks:**
 - Handles actual packet forwarding.
 - Applies filtering, switching, and routing based on control plane rules.
- **Location:** Embedded in network devices like switches and routers.
- **Benefits:**
 - High-speed packet processing.

- Separation from control logic allows for simpler hardware.

Control Plane (it's called The Brain of the Network)


- **Function:** Makes decisions about how data should flow through the network.
- **Role:** Centralized controller that manages routing, policies, and network configuration.
- **Tasks:**
 - Determines optimal paths for data packets.
 - Updates routing tables and forwarding rules.
 - Implements security policies and traffic engineering.
- **Location:** Typically resides in a centralized SDN controller.
- **Benefits:**
 - Simplifies network management.
 - Enables dynamic and programmable control.
 - Improves scalability and flexibility.

Why the Separation Matters

- **Flexibility:** Network behaviour can be changed without touching hardware.
- **Programmability:** Enables automation and intelligent traffic management.
- **Efficiency:** Centralized control reduces complexity and improves performance.

Architecture

- Architecture of SDN consists of three main layers

1. Infrastructure Layer (data plane)

- Also known as: Forwarding Layer
- **Function:** Handles actual data transmission across the network.
- **Components:** Physical and virtual switches, routers, and other network devices.
- **Role:**
 - Forwards packets based on instructions from the control layer.
 - Collects network statistics and status information.
- **Key Feature:** Devices are simplified and programmable, often using protocols like OpenFlow.

2. Control Layer (Control Plane)

- Also known as: SDN Controller
- **Function:** Acts as the brain of the network.
- **Components:** Centralized software-based controller.
- **Role:**
 - Makes decisions about traffic routing and network policies.
 - Communicates with infrastructure devices to enforce rules.
 - Provides abstraction to the application layer.
- **Key Feature:** Centralized intelligence for dynamic and flexible network control.

3. Application Layer

- **Function:** Hosts network applications and services.
- **Components:** Software applications like firewalls, load balancers, traffic analyzers.
- **Role:**
 - Defines network behavior and policies.
 - Requests services from the control layer via APIs.
- **Key Feature:** Enables innovation and customization without changing hardware

How They Work Together

- Application Layer tells the Control Layer what it wants.
- Control Layer translates those requests into instructions.
- Infrastructure Layer executes those instructions to manage traffic.

Different Models of SDN

1. Open SDN

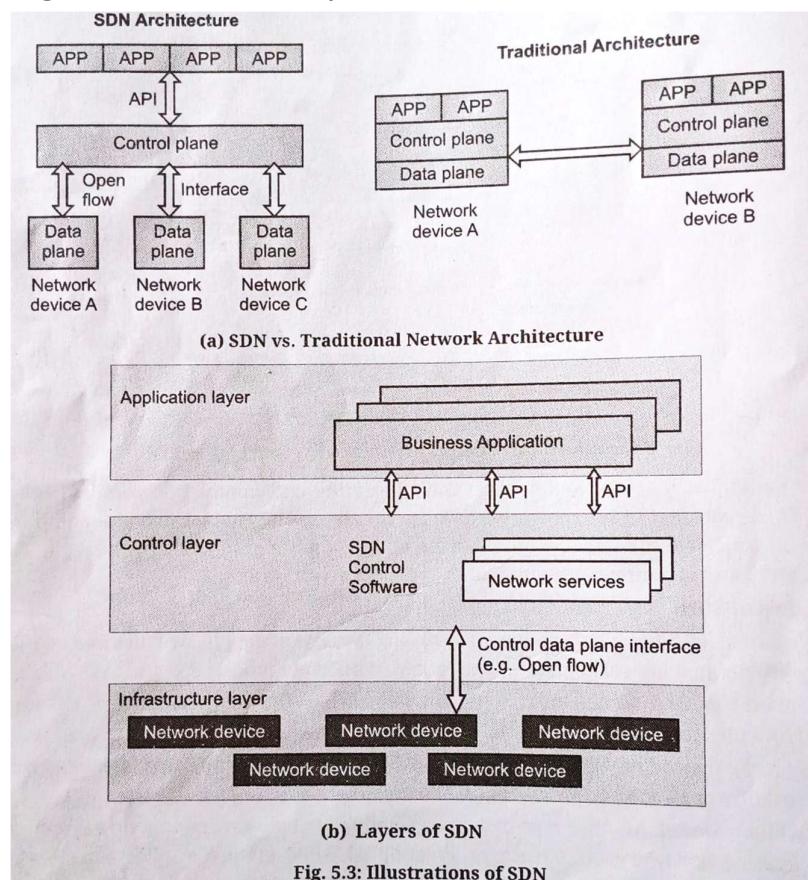
- Uses open protocols like OpenFlow
- Centralized controller manages network devices

2. SDN by APIs

- Uses vendor-specific APIs
- Integrates SDN features into existing hardware

3. SDN Overlay Model

- Creates virtual networks over physical infrastructure
- Uses tunneling protocols like VXLAN


4. Hybrid SDN

- Combines traditional and SDN approaches
- Supports gradual transition to SDN

Working of SDN/ How SDN works?

Fig a) Traditional vs SDN architecture

Fig b) talks about layers in SDN

- Essence of the SDN Architecture is to well divide the network into three subsystems (usually called layers)

1. Application Layer

- Hosts network applications and services
- Communicates with the control layer via APIs
- Defines desired network behavior and policies

2. Control Layer

- Acts as the centralized brain of the network
- Translates application requests into forwarding rules

- Uses protocols (e.g., OpenFlow) to manage infrastructure devices

3. Infrastructure Layer

- Composed of physical and virtual switches/routers
- Executes instructions from the control layer
- Handles actual data forwarding across the network

Advantages of SDN

1. **Centralized Network Control** – One controller manages the entire network, improving visibility and decision-making.
2. **Programmable Network** – Network behavior can be customized through software, enabling automation and flexibility.
3. **Cost Saving** – Reduces hardware costs by using simpler devices; lowers operational expenses through automation.
4. **Enhanced Network Security** – Centralized control allows for consistent security policies and faster threat response.
5. **Scalability** – Easy to expand and adapt the network to growing demands without major hardware changes.
6. **Simplified Network Management** – Centralized configuration and monitoring reduce complexity in managing large networks.

Disadvantages of SDN

1. **Complexity** – Initial setup and integration can be technically challenging.
2. **Dependency on the Controller** – If the controller fails, the entire network may be affected.
3. **Compatibility** – Legacy hardware may not support SDN protocols, requiring upgrades.
4. **Security** – Centralized control can become a single point of attack if not properly secured.
5. **Vendor Lock-in** – Proprietary solutions may limit flexibility and increase long-term costs.

6. Performance – Real-time decision-making by the controller may introduce latency in high-speed environments.

Applications of SDN

1. Data Centres

- **Fabric Optimization:** Streamlines data flow across servers and switches for better performance.
- **Traffic Engineering:** Dynamically manages traffic paths to reduce congestion and latency.
- **Security:** Centralized control enables consistent policy enforcement and rapid threat response.
- **Virtualization:** Supports virtual machines and containers with flexible network configurations.

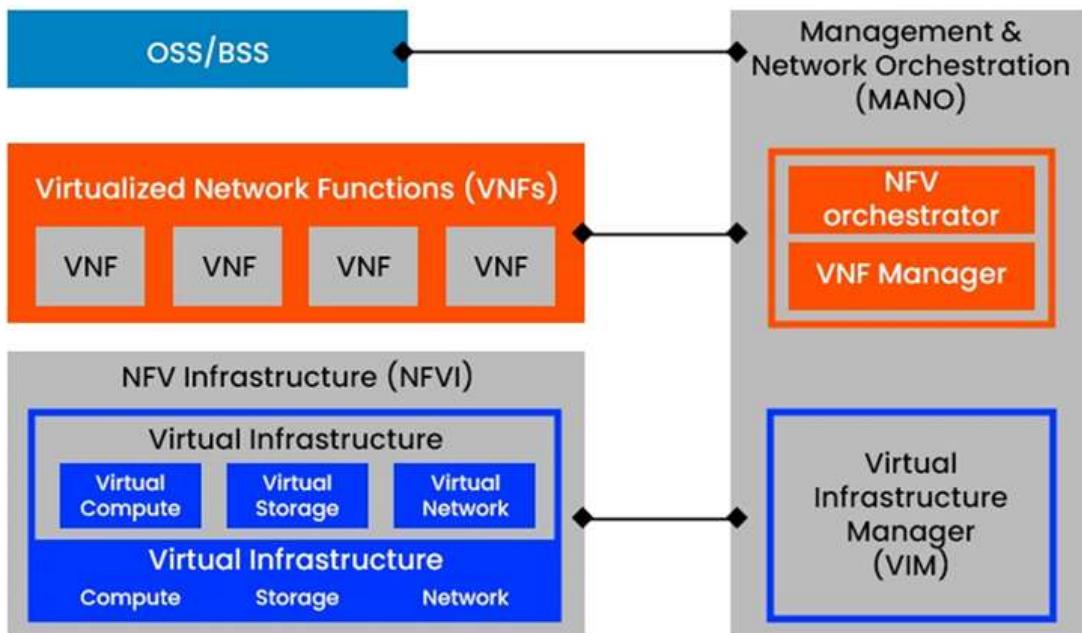
2. Enterprise Networks

- **Campus Networks:** Simplifies management of large-scale networks across multiple buildings.
- **DevOps:** Enables automation and integration of network operations into development workflows.
- **Security:** Implements granular access controls and real-time monitoring.
- **Application-Aware Networking:** Optimizes network behavior based on application needs and priorities.

3. Service Provider Networks

- **Network Provisioning:** Automates setup and scaling of services for customers.
- **Traffic Management:** Balances loads and ensures quality of service across wide areas.
- **Network Slicing:** Creates isolated virtual networks for different services or clients (especially in 5G).

4. Cloud Computing


- **Resource Management:** Allocates bandwidth and compute resources efficiently.
- **Inter-Cloud Networking:** Connects multiple cloud environments seamlessly.
- **Virtualization:** Supports dynamic creation and management of virtual networks.
- **Network Function Virtualization (NFV):** Replaces hardware appliances with software-based functions.
- **Cloud Integration:** Enhances connectivity between on-premises and cloud platforms.
- **IoT and 5G:** Manages massive device connectivity and low-latency communication.

5.3 Network Functions Virtualization (NFV)

- NFV is a modern networking approach that replaces traditional hardware-based network functions (like firewalls, routers, and load balancers) with software-based solutions.
- These functions run on standard servers or virtual machines, rather than specialized hardware.
- NFV improves flexibility, scalability, and cost-efficiency by allowing service providers to deploy and manage network services faster.
- It supports technologies like cloud computing, SDN, and IoT, and is essential for 5G infrastructure.

Working of NFV

Components of NFV Architecture

1. Virtualization Layer

- Abstracts physical hardware into virtual resources
- Enables multiple VNFs to run on shared infrastructure
- Uses hypervisors (e.g., KVM, VMware) or containers (e.g., Docker)

2. Virtual Network Functions (VNFs)

- Software versions of traditional network functions
- Examples: firewall, router, load balancer, NAT
- Can be deployed, scaled, and updated independently

3. NFV Infrastructure (NFVI)

- Physical and virtual resources: compute, storage, and networking
- Hosts the VNFs and supports their operation
- Includes hardware + virtualization layer + resource managers

4. Management and Orchestration (MANO)

- Controls lifecycle and automation of VNFs and services
- Subcomponents:
 - NFV Orchestrator (NFVO) – manages network services
 - VNF Manager (VNFM) – handles VNF lifecycle
 - Virtualized Infrastructure Manager (VIM) – manages NFVI resources

Benefits of Network Functions Virtualization

- 1. Cost Savings:** Reduces hardware and operational expenses by using virtualized resources.
- 2. Agility and Flexibility:** Enables rapid deployment and easy updates of network services.
- 3. Scalability:** Allows dynamic scaling of functions to meet changing demands.
- 4. Enhanced Network Security:** Improves isolation, patching speed, and threat response.
- 5. Service Innovation:** Accelerates rollout of new services and supports experimentation.

Challenges in Network Functions Virtualization (NFV)

- 1. Complexity:** Managing virtualized environments and orchestration tools can be intricate.
- 2. Security:** Virtual layers introduce new vulnerabilities and require robust protection.
- 3. Integration with Legacy Systems:** Compatibility issues arise when blending old hardware with new virtual functions.
- 4. Performance and Reliability:** VNFs may not match the speed and stability of dedicated hardware.
- 5. Vendor Lock-in:** Proprietary solutions can limit flexibility and hinder interoperability.

Applications of NFV

- 1. Telecom and Network Service Providers**
 - Service Agility and Flexibility:** NFV allows rapid deployment and modification of services without hardware changes.
 - Reduced Costs:** Replaces expensive proprietary hardware with virtualized solutions on standard servers.

- **Improved Time-to-Market:** Speeds up service rollout by automating provisioning and updates.
- **On-Demand Scaling:** VNFs can be scaled up or down based on traffic and user demand.
- **Network Slicing:** Enables creation of multiple virtual networks on shared infrastructure, tailored for different use cases (e.g., IoT, video streaming).
- **Virtual Customer Premises Equipment (vCPE):** Moves functions like routing and firewall from physical devices at customer sites to the cloud, simplifying management.

2. Cloud Data Centers

- **Dynamic Network Management:** NFV enables flexible control over network resources, adapting to changing workloads.
- **Load Balancing and High Availability:** VNFs can distribute traffic efficiently and ensure redundancy to maintain uptime.

3. Enterprise Networks

- **Virtualized Firewall and Intrusion Detection:** Enhances security by deploying software-based protection that's easier to update and scale.
- **Virtualized Routers and Load Balancers:** Replaces physical devices with VNFs for routing and traffic distribution, reducing hardware dependency.
- **WAN Optimization:** Improves performance of wide-area networks through virtual tools that compress and prioritize traffic.
- **Cloud-Based Applications:** Supports seamless integration of enterprise apps with cloud infrastructure using virtualized networking.

4. General Applications

- **Network Monitoring:** VNFs can track performance, detect anomalies, and generate analytics in real time.
- **Security Functions:** Includes virtual firewalls, anti-DDoS systems, and threat detection tools.
- **Network Function as a Service (NFaaS):** Offers VNFs on-demand via cloud platforms, allowing users to consume network services like utilities.

Q: Differentiate between NFV and SDN

Difference between SDN and NFV:

Features	SDN	NFV
Scope	SDN is primarily focused on the control and management of network traffic flows.	NFV is focused on the virtualization and management of network functions.
Functionality	SDN separates the control plane (which determines how traffic is routed) from the data plane (which handles the actual transmission of data), allowing for more flexible and programmable network management.	NFV virtualizes network functions such as routing, switching, firewalling, and load balancing, allowing these functions to be deployed and managed as software-based virtual network functions (VNFs).
Deployment	SDN typically requires specialized network hardware, such as switches and routers, that support OpenFlow or other SDN protocols.	NFV can be deployed on standard x86 servers, storage, and switches.
Management and Orchestration	SDN typically relies on centralized controllers that manage and orchestrate network traffic flows.	NFV also requires management and orchestration, but this is typically focused on the deployment and management of VNFs.
Standards	SDN is primarily defined by the Open Networking Foundation (ONF) and the OpenFlow protocol.	NFV is defined by the European Telecommunications Standards Institute (ETSI) and its NFV Industry Specification Group (ISG).
	<p>Note: Both technologies are based on open standards, there are some differences in the specific standards and protocols used by each.</p>	

Contd...

Network Architecture	SDN is typically used to create a centralized, software-defined network architecture that is more programmable and easier to manage.	NFV, on the other hand, is focused on virtualizing network functions to create a more flexible and scalable network architecture.
Network Abstraction	SDN abstracts the network infrastructure from the control plane, allowing network administrators to define network policies and configurations that are separate from the underlying hardware.	NFV abstracts network functions from the underlying hardware, allowing them to be deployed and managed independently of the physical infrastructure.
Service Delivery	SDN can be used to enable new service delivery models, such as network slicing, that allow network resources to be allocated dynamically based on the needs of specific applications or services.	NFV can also enable new service delivery models by allowing network functions to be deployed and scaled up or down based on demand.
Vendor Ecosystem	SDN has a larger and more mature vendor ecosystem than NFV, with a wide range of products and solutions available from established networking vendors as well as startups.	NFV is still a relatively new technology, and the vendor ecosystem is still evolving.

Edge Computing and Edge Networking

Definition of Edge Computing

Edge computing is a distributed computing model that processes data closer to where it's generated—such as IoT devices or local servers—rather than relying solely on centralized cloud data centers.

Why It's Important

- Low Latency:** Reduces delay by processing data near the source, enabling real-time responses (e.g., in autonomous vehicles or industrial automation).
- Improved Bandwidth Efficiency:** Minimizes the need to send large volumes of data to the cloud, saving bandwidth.
- Enhanced Security:** Keeps sensitive data local, reducing exposure to external threats.
- Scalability:** Supports the growing number of connected devices and data-heavy applications.

- **Smart Decision-Making:** Enables faster, localized insights for time-critical operations.
- Several open-source systems for edge computing have been developed and deployed

1. **Apache Edgent:** A lightweight framework for real-time data analytics on edge devices.
2. **EdgeX Foundry:** An open-source platform enabling interoperability for IoT edge solutions.
3. **Azure IoT Edge:** Deploys cloud intelligence like AI and analytics directly to edge devices.
4. **OpenStack:** A cloud infrastructure platform with edge support for managing distributed resources.

Examples

1. **IoT Devices :** Sensors and other IoT devices can process data locally without sending to cloud
2. **Local Servers :** Edge servers can be deployed at various locations such as factories, or retail stores to process data locally

Components of Edge Computing

1. Perception Layer

- Responsible for data collection from sensors, devices, and IoT endpoints
- Acts as the interface between the physical world and digital systems
- Examples: temperature sensors, cameras, RFID readers

2. Networking Layer

- Transmits data between edge devices and other layers

- Ensures connectivity, routing, and communication protocols
- Technologies include Wi-Fi, 5G, Ethernet, LPWAN

3. Edge Computing Layer

- Performs local data processing, filtering, and analytics
- Reduces latency by minimizing reliance on cloud data centers
- Hosts edge servers, gateways, and micro data centers

4. Application Processing Layer

- Executes business logic and application-specific tasks
- Interfaces with cloud services or enterprise systems
- Supports real-time decision-making and service delivery

Main Components of edge computing systems are:

- 1. Edge Devices:** Sensors, cameras, IoT devices that generate and sometimes process data locally.
- 2. Edge Gateways:** Act as intermediaries between edge devices and the cloud; handle protocol translation, preprocessing, and security.
- 3. Edge Servers:** Perform intensive local processing and analytics; often located near data sources to reduce latency.
- 4. Edge Local Storage:** Temporarily stores data at the edge for quick access and reduced cloud dependency.
- 5. Network Infrastructure:** Includes routers, switches, and communication links that connect edge components and ensure data flow.
- 6. Edge Computing Platform/ Management Software:** Manages deployment, orchestration, monitoring, and updates of edge applications and services.
- 7. Cloud or Centralized Data Center:** Provides long-term storage, deep analytics, and centralized control when needed.

8. Security Components: Protects data and devices through encryption, authentication, firewalls, and intrusion detection systems.

Advantages of Edge Computing

- 1. Speed:** Processes data closer to the source, reducing latency and enabling real-time responses.
- 2. Security:** Keeps sensitive data local, minimizing exposure and enabling faster threat detection.
- 3. Scalability:** Supports growing device networks by distributing processing across multiple edge nodes.
- 4. Versatility:** Adapts to various environments—from smart cities to industrial automation—with flexible deployment.
- 5. Reliability:** Continues functioning even with intermittent cloud connectivity, ensuring consistent performance.
- 6. Cost Saving:** Reduces bandwidth and cloud storage costs by handling data locally.
- 7. New Functionality:** Enables advanced features like AI inference, real-time analytics, and autonomous decision-making at the edge.

Challenges of Edge Computing

1. Security and Privacy Risks

- Decentralized Nature:** More endpoints mean more vulnerabilities.
- Data Privacy:** Sensitive data processed locally may lack centralized safeguards.
- Attack Surface Expansion:** Increased number of devices broadens exposure to threats.

2. Device and Network Management

- **Heterogeneity of Devices:** Diverse hardware and protocols complicate integration.
- **Remote Management:** Updating and monitoring distributed devices is complex.
- **Network Reliability:** Connectivity issues can disrupt edge operations.

3. Scalability

- **Resource Constraints:** Limited compute and storage at the edge restrict scaling.
- **Interoperability:** Ensuring smooth interaction between varied systems is challenging.

4. Data Synchronization and Consistency

- **Distributed Data:** Keeping data consistent across nodes is difficult.
- **Latency:** Delays in syncing can affect real-time decision-making.

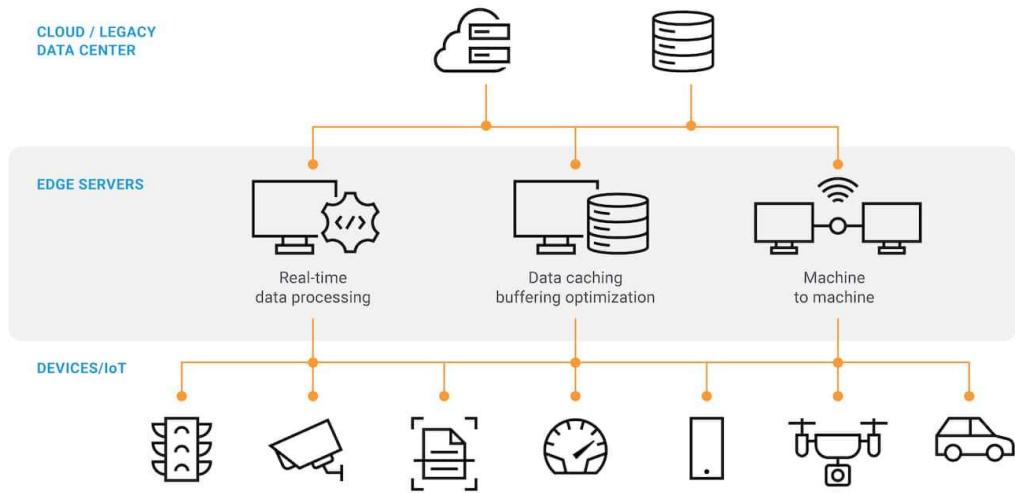
5. Latency and Quality of Service

- **Real-Time Processing:** Demands ultra-low latency, which is hard to guarantee.
- **Quality of Service (QoS):** Maintaining performance across diverse conditions is tough.

6. Power Consumption

- **Edge Device Limitations:** Many devices run on constrained power sources.
- **Balancing Performance and Power:** High performance often conflicts with energy efficiency.

Applications of edge computing


1. **Autonomous Vehicles:** Processes sensor data locally for real-time decision-making, enabling safe navigation and collision avoidance.

- 2. Smart Cities:** Supports intelligent infrastructure like traffic lights, surveillance, and waste management with low-latency data processing.
- 3. Industrial Automation:** Enhances factory operations by enabling predictive maintenance, robotics control, and real-time monitoring of machinery.
- 4. Healthcare:** Facilitates remote patient monitoring, diagnostics, and emergency response with faster data analysis at the edge.
- 5. Telecommunications:** Improves network performance and reliability by offloading tasks from centralized servers to edge nodes, especially in 5G.
- 6. Transport and Traffic Monitoring:** Analyzes traffic flow, congestion, and incidents locally to optimize routing and reduce delays.
- 7. IoT Devices:** Enables smart homes, wearables, and connected appliances to function efficiently with minimal cloud dependency.

Edge Networking: Definition of Edge Networking

- Edge networking refers to the architecture that places data processing and network resources closer to the devices generating data—at the “edge” of the network—rather than relying solely on centralized cloud servers.
- Edge networking is foundational for modern innovations like smart cities, 5G, and real-time analytics.
- It is beneficial for applications like
 - Internet of Things (IoT)
 - Artificial Intelligence (AI)

Components of Edge Networking

- 1. Edge Devices:** Sensors and IoT hardware that generate and sometimes process data locally.
- 2. Edge Nodes / Edge Services:** Intermediate systems that perform computation and service delivery near the data source.
- 3. Network Infrastructure:** Connectivity backbone including routers, switches, and communication protocols.
- 4. Cloud or Central Data Center:** Centralized systems for deep analytics, storage, and global coordination.
- 5. Security Components:** Tools like firewalls, encryption, and access controls to protect edge data and devices.
- 6. Software and Middleware:** Platforms that manage orchestration, data flow, and integration across edge and cloud.

Advantages of Edge Networking

- 1. Higher Performance:** Processes data locally for faster execution and reduced latency.
- 2. Real-Time Insights:** Enables immediate analysis and decision-making at the data source.
- 3. More Reliable Networks:** Operates independently of cloud connectivity, ensuring continuity.

4. Support for Emerging Technologies: Powers innovations like IoT, 5G, and autonomous systems.

5. Smoother User Experiences: Delivers faster, more responsive services to end users.

Challenges in Edge Networking

- 1. Security and Privacy Risks:** Decentralized architecture increases vulnerability points.
- 2. Device Management:** Diverse hardware and remote locations complicate control and updates.
- 3. Data Consistency and Synchronization:** Ensuring uniform data across distributed nodes is difficult.
- 4. Connectivity Issues:** Network instability can disrupt edge operations.
- 5. Limited Processing Power:** Edge devices often lack the capacity for heavy computation.
- 6. Integration with Existing Systems:** Compatibility with legacy infrastructure can be complex.
- 7. Cost and Maintenance:** Requires investment in hardware, software, and ongoing upkeep.
- 8. Skilled Manpower Required:** Demands expertise in edge architecture, security, and orchestration.

Applications of Edge Networking

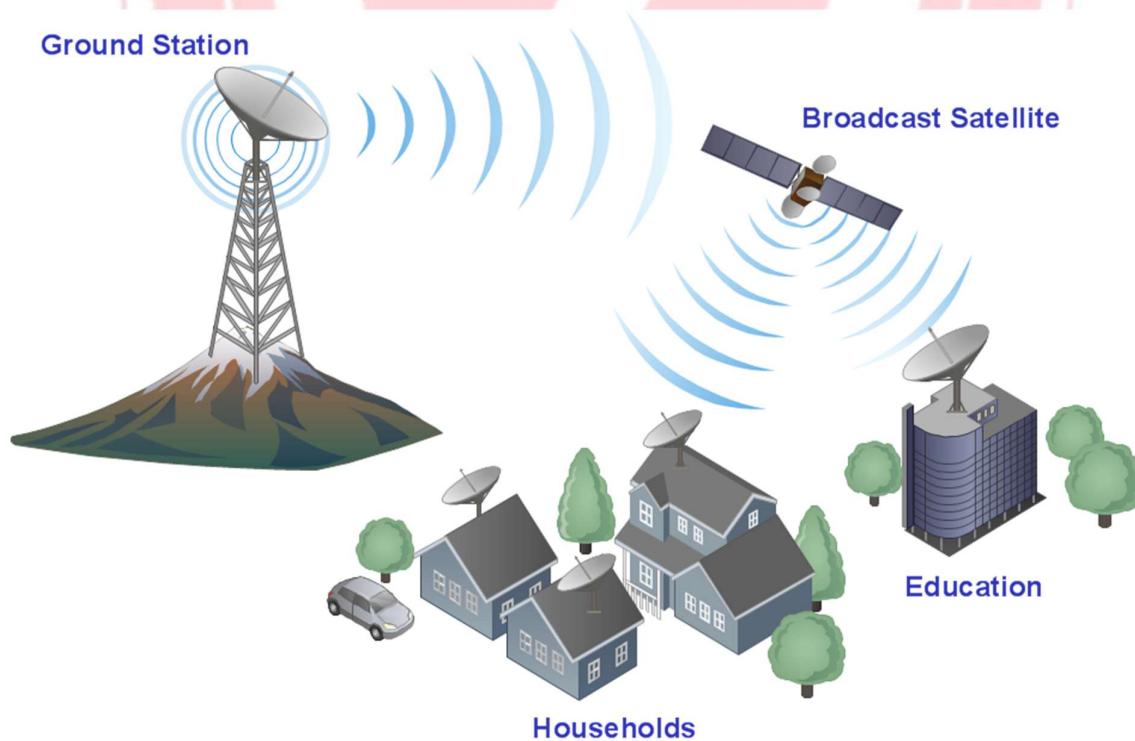
- 1. Autonomous Vehicles:** Enables real-time decision-making by processing sensor data locally for safe navigation.
- 2. Healthcare and Remote Patient Monitoring:** Supports instant health data analysis for timely diagnosis and alerts.
- 3. Smart Cities:** Powers intelligent infrastructure like traffic control, surveillance, and energy management.
- 4. Industrial Automation (Industry 4.0):** Facilitates predictive maintenance and real-time control of machinery.

5. **Gaming and AR/VR:** Reduces latency for immersive, responsive user experiences in virtual environments.
6. **Smart Homes:** Enhances automation and device coordination with faster local processing.
7. **Agriculture:** Enables precision farming through real-time monitoring of soil, weather, and crop conditions.
8. **Retail:** Improves customer experience with smart shelves, inventory tracking, and personalized services.
9. **Defence and Aerospace:** Supports mission-critical operations with secure, low-latency data handling at remote sites.

Q: Differentiate between edge computing and edge networking

Difference between Edge computing and Edge networking:		
Feature	Edge Computing	Edge Networking
Definition	Processing data at or near the source of data generation.	The communication infrastructure that connects edge devices.
Main Goal	Reduce latency by minimizing the need to send data to the cloud.	Ensure data can travel efficiently between edge devices and networks.
Focus Area	Computation and data processing.	Data transmission and connectivity.
Key Components	Edge servers, gateways, local devices with processing power.	Routers, switches, edge routers, network protocols.
Example Use Case	A factory floor machine analyzing sensor data locally.	Enabling 5G connectivity to smart traffic lights.
Reduces Load On	Cloud servers and data centers. Cloud servers and data centers.	Backbone networks and central routers.
Latency	Ultra-low, as processing happens locally.	Low, optimized by shorter data travel routes.
Dependency	Relies on edge networking for connectivity.	Relies on edge computing to process and act on data locally.
Common Technologies	AI at the edge, local data analytics, edge containers.	SD-WAN, 5G, edge switches, network slicing.

5.5 Multimedia Wireless Networks


- Multimedia Wireless Networks are communication systems designed to transmit multimedia content—such as audio, video, and data—over wireless channels. These networks support real-time applications like video streaming, online gaming, and video

conferencing by ensuring high bandwidth, low latency, and Quality of Service (QoS). Technologies like Wi-Fi, 4G/5G, and Bluetooth play a key role in enabling seamless multimedia delivery across mobile and smart devices.

The typical setup includes:

- **Multimedia Source:** Devices like smartphones, laptops, or cameras generating audio/video/data.
- **Wireless Access Point (WAP):** Connects multimedia devices to the network using Wi-Fi, Bluetooth, or cellular signals.
- **Router/Gateway:** Directs traffic between local devices and the internet or cloud services.
- **Cloud Server / Streaming Platform:** Stores and delivers multimedia content to users.
- **End User Devices:** Smartphones, smart TVs, or tablets receiving and playing multimedia content.

Examples of Application

1. Smart Home Systems

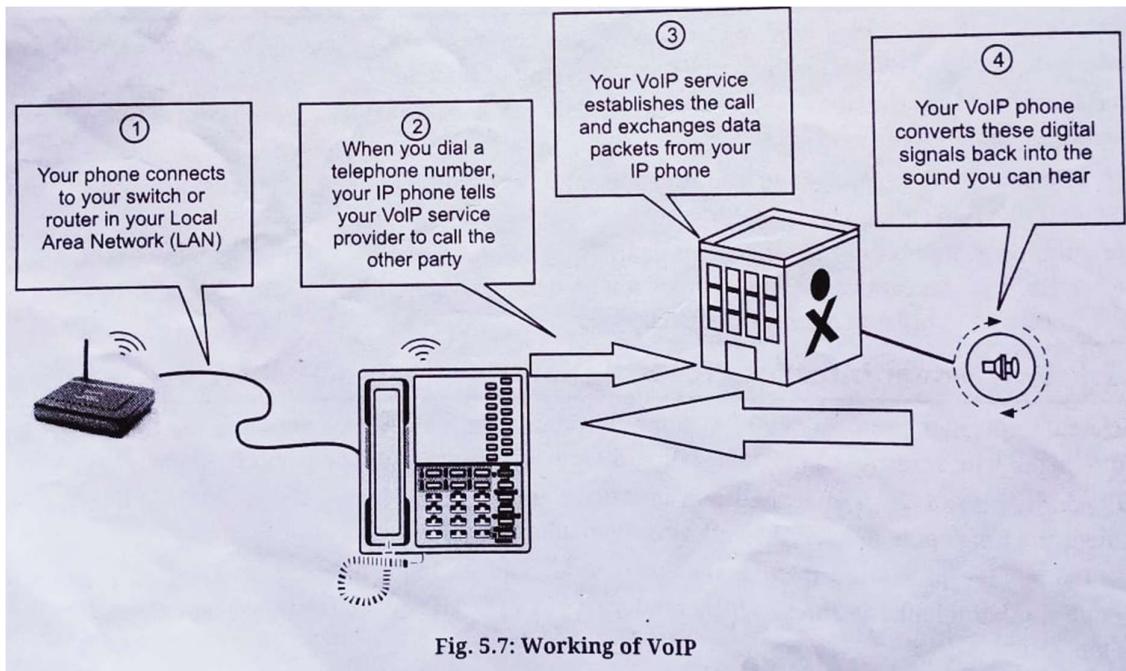
2. Real-time Monitoring

3. Video Conferencing

4. Streaming Services

Streaming Audio and Video

- Streaming audio and video refers to the continuous transmission of multimedia content over the internet, allowing users to play media in real time without downloading the entire file first. It's the backbone of platforms like YouTube, Netflix, Spotify, and live event broadcasts.


Voice Over Internet Protocol (VoIP)

- Voice Over Internet Protocol (VoIP) is a technology that allows voice communication over the internet instead of traditional phone lines.

How VoIP Works

- Definition:** VoIP (also called IP telephony) enables voice communication over IP networks like the internet.
- Function:** It converts voice into digital packets using compression, sends them over the internet, and reassembles them into sound at the receiver's end.
- Process:**
 - Your phone connects to a switch/router in your LAN.
 - When you dial a number, your IP phone signals the VoIP service provider.
 - The provider sets up the call and exchanges data packets.
 - Your IP phone converts these packets back into audible sound.
- Requirements:** A broadband connection and a VoIP service provider are essential.

- **Difference from Analog:** Unlike traditional phone systems (DSL, cable), VoIP uses digital packet transmission.

VoIP Services:

- VoIP (Voice over Internet Protocol) services allow users to make voice and video calls using the internet instead of traditional phone lines. These services convert voice into digital packets and transmit them over IP networks, offering flexibility, cost savings, and advanced features

Examples of VoIP

- Skype
- WhatsApp
- Viber
- Google Hangouts
- Facebook Messenger

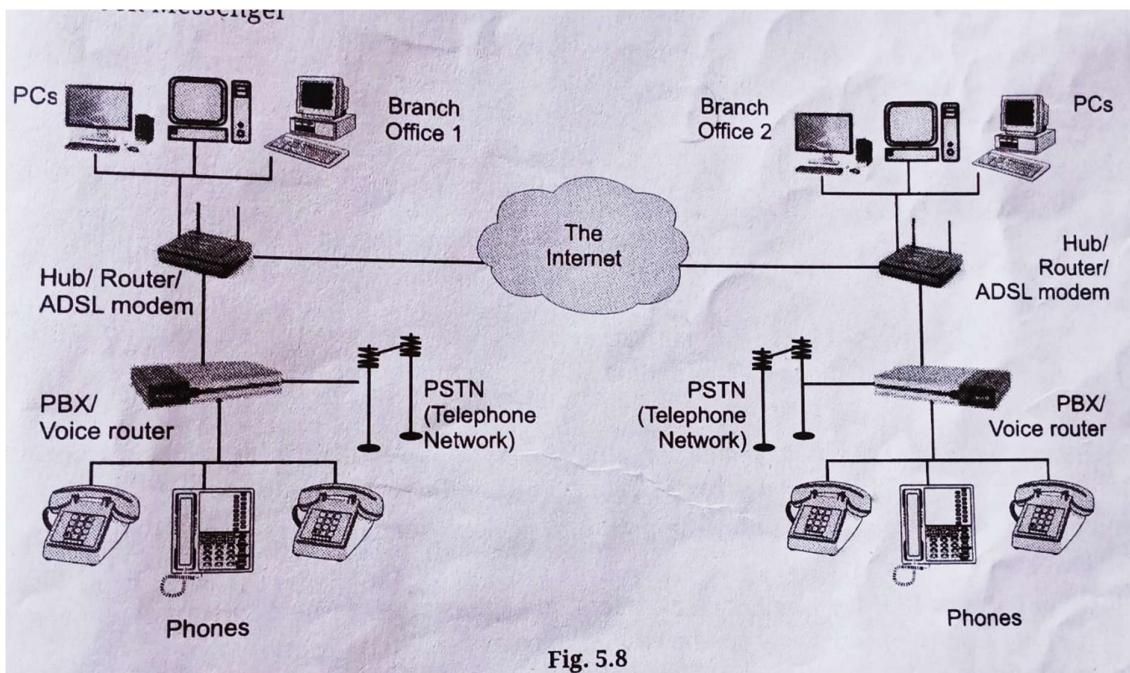


Fig. 5.8

Benefits of VoIP

- 1. Cost Effective:** Cuts down on call charges by using internet-based communication.
- 2. Flexibility:** Lets you make calls from any device, anywhere with internet access.
- 3. Scalability:** Easily expands to support more users without major infrastructure changes.
- 4. Features:** Offers advanced tools like voicemail-to-email, call forwarding, and video conferencing.

Protocols

- Set of rules that enables voice and multimedia communication over the internet. Most common protocols used in VoIP are RTP & RTSP

Real-time Transport Protocol (RTP)

- RTP is a network protocol used to deliver audio and video over IP networks, especially in real-time applications like telephony and video conferencing.

- **Usage:**

- Provides end-to-end transport functions for real-time data.
- Works alongside UDP and RTCP (Real-time Transport Control Protocol).
- Commonly used in streaming media, video conferencing, and push-to-talk systems.

Benefits of using RTP

- **Real-time Delivery:** Ensures continuous transmission of multimedia data.
- **Packetization:** Breaks multimedia content into manageable packets.
- **Packet Identification:** Uses sequence numbers to maintain correct order.
- **Synchronization:** Employs timestamps to align audio and video streams.
- **Scalability:** RTP Can be used in both small-scale and large-scale industries

Limitations of using RTP

1. **Security:** RTP lacks built-in encryption, making it vulnerable to eavesdropping and data tampering unless paired with protocols like SRTP.
2. **Complexity:** Implementing RTP with synchronization, sequencing, and error handling can be technically demanding.
3. **Packet Loss:** RTP is sensitive to network conditions; lost packets can degrade audio/video quality since it doesn't guarantee delivery

Application of Real-time transport protocol

1. **Voice over IP (VoIP)** – Enables real-time voice communication over the internet.

2. **Video Conferencing** – Supports synchronized audio and video streams for live meetings.
3. **Streaming Media** – Delivers continuous audio/video content like movies and music.
4. **Telephony** – Powers digital phone systems with real-time voice transmission.
5. **Broadcast Television** – Facilitates live TV transmission over IP networks.

Real-Time Streaming Protocol (RTSP)

- RTSP is an application-level protocol used to control the delivery of real-time multimedia streams like audio and video between a client and a server. It's commonly used in video surveillance, IP cameras, media players, and streaming servers.
- RTSP is a network control protocol used to manage streaming media sessions between clients and servers.

How RTSP works

- RTSP doesn't transmit media itself—it controls the streaming session.
- It uses commands like:
 - **PLAY** – Start streaming
 - **PAUSE** – Temporarily stop
 - **RECORD** – Begin recording
- **SETUP** – Initialize session parameters
- Media is typically streamed using RTP over UDP or TCP, while RTSP manages the session over port 554

Components of RTSP

1. **Clients** – Media players or software (e.g. VLC, QuickTime) that send RTSP commands to initiate and control streaming sessions.

2. **Servers** – Host media content and respond to client requests, managing session states and stream delivery.
3. **RTSP Requests and Responses**– Commands like **PLAY**, **PAUSE**, **RECORD**, **STOP**, and **TEARDOWN** are exchanged to control playback and session flow
4. **Transport Protocols** –
 - **TCP**: Used for reliable transmission of RTSP commands,
 - **UDP (via RTP)**: Used for efficient, low-latency delivery of actual media content.
5. **Session Description**– RTSP uses a **Session Description Protocol (SDP)** to describe the media stream's properties.
The **client sends a DESCRIBE request**, and the server responds with an SDP file containing: Media type (audio, video)
6. **Media** – Monitors stream quality (packet loss, jitter, latency)

Advantages of RTSP

1. Enables real-time streaming for live broadcasts and conferencing
2. Offers interactive control over playback and recording
3. Supports scalability for multiple users

Limitations of RTSP

1. Complex to implement and configure
2. Firewall/NAT issues may block RTSP traffic
3. High bandwidth usage for quality media
4. Requires load balancing for heavy traffic
5. Security vulnerabilities like unauthorized access
6. Compatibility issues with some devices
7. Performance limitations in poor networks
8. Risk of server overload without proper management

Applications of RTSP

- Video Surveillance Systems:** RTSP enables real-time streaming from IP cameras to monitoring stations, allowing live surveillance and remote playback.
- Live Streaming Services:** It powers platforms that deliver live or on-demand video content by managing stream control without downloading files.
- Video Conferencing and Collaboration:** RTSP supports synchronized media sessions, making it ideal for interactive meetings and team communication.
- Interactive Education and Training:** RTSP allows learners to control playback of educational content, enhancing engagement in virtual classrooms.
- Multimedia Players and Applications:** Media players like VLC and QuickTime use RTSP to stream content from servers with commands like play and pause.
- Content Delivery Networks (CDNs):** RTSP helps CDNs manage and distribute media streams efficiently across multiple servers for scalable delivery.

Q: Differentiate between RTP and RTSP

used in multimedia streaming.		
Feature	RTP	RTSP
Definition	A transport protocol designed to transmit audio and video data in real time.	A control protocol used to manage and control streaming media sessions between clients and servers.
Primary Function	Handles the actual transmission of multimedia data (e.g., audio, video).	Provides commands for session control (e.g., play, pause, stop, teardown).
Role	Focuses on delivering media packets efficiently with synchronization and jitter control.	Acts as a "remote control" for managing media streams but does not transmit the media itself.

Contd...

Advance Computer Network		
Data Transmission	Operates over UDP/IP to ensure low latency in delivering multimedia packets.	Establishes control connections over TCP to manage sessions; uses RTP for actual data transmission.
Session Control	Does not provide session control; only transmits data.	Enables session setup, playback control, and termination using commands like PLAY or PAUSE.
Protocol Interaction	Works alongside RTCP for feedback on stream quality.	Works with RTP to transport media after negotiating session parameters.
Use Cases	Used in live streaming, VoIP (Voice over IP), and video conferencing for transmitting real-time data.	Commonly used for video surveillance (IP cameras), IPTV, and interactive video-on-demand services.
Scenarios	Ideal for transmitting raw multimedia data efficiently across networks.	Suitable for applications requiring user interaction with streams, such as pausing or rewinding content.
Synchronization	Provides mechanisms for synchronizing audio and video streams.	Allows segmented streaming so users can start viewing before full download.
Functionality	RTP focuses solely on transporting multimedia data.	RTSP is responsible for controlling how the multimedia is streamed.
Protocol Dependency	RTP can function independently for raw media transmission.	RTSP relies on RTP (and sometimes RTCP) to handle actual media delivery.
Use Case Focus	RTP is ideal for applications requiring efficient data transfer, such as live broadcasting.	RTSP is better suited for interactive applications like surveillance systems or video-on-demand.

